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Abstract

We investigate the coupled axial–torsional vibration of pretwisted beams. The equations of motion governing the

extension, torsion, and cross-sectional warping of pretwisted beams are derived from Hamiltons principle, and the

common assumptions used to simplify the equations are carefully examined through scaling analysis. Inconsistencies in

previous works—such as the neglect of spatial and time derivatives of torsion in the Lagrangian functional—are remedied,

giving rise to fourth-order terms in the equations of motion that are significant for higher harmonics. Furthermore, scaling

analysis of the governing equations yields a set of objective criteria for checking the validity of the frequently misused

assumption that the warping function under pretwist is locally identical to that of a prismatic beam; we show that this

simplification is responsible for the common poor prediction of axial resonance frequencies for pretwisted beams.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Pretwisted beams exhibit interesting coupling phenomena between extension, torsion and flexure, and have
been the subject of extensive research due to their importance as models for aircraft and helicopter rotor
blades [1]. More recently, a new application exploiting the beam’s inherent axial–torsional coupling has also
been demonstrated in the design of a piezoelectric ultrasonic motor with great miniaturization potential [2].

Due to the complex geometry of pretwisted beams, past researchers have developed a number of
approximate theories. An early approach with mixed results was Chu’s helical fiber assumption [3], where
stresses are initially determined along and perpendicular to helical fibers of the beam’s pretwist. While its
predictions matched experimental results for thin-walled beams, it was nevertheless a flawed theory that
predicted axial–torsional coupling where none is present (e.g. beams with circular cross-sections).

In recent years, warping function-based beam theories appear to have become widely accepted [1] since they
overcome the shortcomings of the helical fiber assumption—correctly predicting that pretwist has no effect on
beams with circular cross-sections. Representatives of the theory include the works of Rosen [4,5], Hodges [6],
Krenk [7] on static axial–torsional coupling, and Rosen [1], Tsuiji [8] on the dynamic response.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The warping function theories are based on semi-inverse and variational methods. The semi-inverse method
was proposed by Saint-Venant for solving the elastic deformation of prismatic rods under resultant end loads,
force FT and moment FM [9,10]. The method simplifies the governing equations of the problem by making
assumptions about the functional form of the displacement field based on ‘physical insights’. Accordingly, the
correctness and complexity of the resulting equations depend crucially on the initial choice of the compatible
displacement field. Two common assumptions are made for the coupled extension–torsion problem: first, that
deformation parallel to the cross-sections is negligible, and second, that axial deformation consists of bulk
displacement ū and cross-sectional warping c. For example, the displacement field used by Rosen [5]
(and Tsuiji [8] if we neglect bending) is

uðx; y; z; tÞ ¼ ūðx; tÞ þ f0ðx; tÞcðx; y; zÞ, (1a)

vðx; y; z; tÞ ¼ y½cosfðx; tÞ � 1� � z sinfðx; tÞ, (1b)

wðx; y; z; tÞ ¼ y sinfðx; tÞ þ z½cosfðx; tÞ � 1�, (1c)

where u; v;w are, respectively, the displacement components in the x; y; z directions, and f represents the angle
of elastic rotation additional to the pretwist angle b (see Fig. 1). Following standard convention, primes and
over dots denote differentiation with respect to x and t.

Note that the cross-sectional warping c is the single term that accounts for the axial–torsional coupling of
pretwisted beams in these theories. Given the importance of the warping function in the coupling between
extension and torsion, it is surprising that no one, to our knowledge, has derived the governing equations for
the warping function of pretwisted beams. Most researchers simply assume that it has the same form as the
warping function of prismatic beams expressed in the local coordinates (Z; z).

Although Krenk [11] showed that the prismatic beam warping function is the leading term in the
axial–torsional coupling, the result was derived from an asymptotic solution to the three-dimensional
equations of elasticity. This means that the assumption is valid only for beams with small pretwist, and it is
unclear, quantitatively, at what limit the approximation fails.

The equations of motion for the axial–torsional vibration of pretwisted beams derived by Rosen [1] have the
following form:

a1ū
00 þ a2f

00
¼ €̄u,

b1ū00 þ b2f
00
¼ €f, (2)

which is the same as those derived by Tsuiji [8], and Curti and Risitano [12] except for slight differences in the
coefficients. While the torsional resonance frequencies predicted by Eqs. (2) matches results of finite-element
analysis (FEA) at low pretwist, a careful examination of Rosen’s work shows, however, that Eqs. (2) are
physically inconsistent with the assumptions used in its derivation.
Fig. 1. The coordinate systems used to describe the pretwisted beam, and the external forces and moments acting on the beam.
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Rosen [1] derived Eqs. (2) by adding inertia terms to the linearized version of the static load–deformation
relations he obtained in Ref. [5]. This is equivalent to forming the Lagrangian functional by adding kinetic
energy terms to the potential energy function in Ref. [5] and applying Hamilton’s principle, noting the fact that
he neglects the mixed derivative term in the kinetic energy, c _f0, and assumes that torsion is uniform f00 ¼ 0.
The uniform torsion assumption—which simplifies the potential energy function considerably—is only valid
for static cases, however, Rosen carried it into the dynamic case and allowed f00 to ‘slip’ back into Eq. (2).
Examining these assumptions further, solutions of equations (2) imply that

fðxÞ�F cosðlxÞeiot,

jf00j�l2F and j _f0j�loF, (3)

where l�1=L and o�104=L for metal beams of length L. Thus the neglected terms are, in fact, of similar or
larger magnitude than the retained terms when Lo1.

The present work is divided into three sections. In the first section, we provide a rigorous derivation of the
equations governing the axial–torsional coupling of pretwisted beams. The semi-inverse method and Eqs. (1)
remain the starting point; however, we retain the mixed derivative term c _f0 in the velocity field and we do not
assume torsion to be uniform. This results in fourth-order terms with very small coefficients in the new equations
of motion, thus explaining the apparent success of Eqs. (2) in predicting low harmonic frequencies at low
pretwist. Most importantly, we derive the governing equations for the cross-sectional warping of pretwisted
beams by treating c as an unknown dependent function in the application of Hamilton’s principle. Scaling
analysis is then used to obtain an objective set of criteria to quantify the limits under which prismatic beam
warping function and other simplifying assumptions may be consistently applied on a physically justifiable basis.

In the second section, we solve the new equations of motion and compare its resonance frequency predictions
with FEA results. Two significant results are drawn from the comparison. First, the criteria successfully predict
geometries for which significant error will appear; it gives clear guidelines as to when the warping function
simplification is valid. Second, the misuse of the prismatic warping function is shown to be the leading cause for
the poor prediction of axial resonance frequencies by warping function-based beam theories.

Note that we ensure bending is uncoupled from torsion and extension by restricting the geometry of the
beam such that the centroid and shear centre coincide with the axis of pretwist [5,13,14]. Furthermore, the
beam begins stress-free in the pretwisted configuration; the axial–torsional coupling investigated in this paper
are those present due to the geometry alone.

2. Equations of motion

The equations of motion are derived using Hamilton’s principle:

d
Z t2

t1

ðT þW ext �UÞdt ¼ 0, (4)

where T is the kinetic energy, W ext is the work done by external forces, U is the strain energy, and d is the
delta-operator for the first variation. Note that the deformed state of the pretwisted beam can be described
using two coordinate systems (CS): an orthogonal CS ðx; y; zÞ, and a rotating CS ðx; Z; zÞ, where Z and z rotate
with the pretwist angle bðxÞ (see Fig. 1). In this section the orthogonal CS is used since it allows simpler
derivation of the equation of motion. Later a switch is made to the rotating CS where simpler boundary
conditions can be used when various sectional integrals involving the warping function need to be evaluated.

2.1. Describing the motion and the deformation

In order to express the strain energy in terms of the displacement field, Green’s strain-displacement relation
is used:

�ij ¼
1

2

quj

qxi

þ
qui

qxj

þ
qua

qxi

qua

qxj

� �
. (5)
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The resulting strain components are

�xx ¼
qu

qx
þ

1

2

qu

qx

� �2

þ r2y2
" #

, (6a)

�xy ¼
1

2
y

qc
qy

1þ
qu

qx

� �
� z

� �
; �xz ¼

1

2
y

qc
qz

1þ
qu

qx

� �
þ y

� �
, (6b)

�yy ¼
1

2
y2

qc
qy

� �2
; �yz ¼

1

2
y2

qc
qy

qc
qz

� �
; �zz ¼

1

2
y2

qc
qz

� �2
, (6c)

where

qu

qx
¼ �̄xx þ y

qc
qx
þ

qy
qx

c,

�̄xx ¼
qū

qx
; y ¼

qf
qx
; r2 ¼ z2 þ y2. (7)

To express the kinetic energy in terms of the displacement field, the velocity vector _R of each point in the beam
is given by

_R ¼ _u ¼ ð _uÞêx þ ð_vÞêy þ ð _wÞêz

¼ ð _̄uþ _ycÞêx þ
_fð�y sinf� z cosfÞêy þ

_fðy cosf� z sinfÞêz

¼ ð _̄uþ _ycÞêx þ r _f½�ðsinfÞêr þ ðcosfÞêf�, (8)

where the cartesian unit vectors ðêx; êy; êzÞ are transformed to cylindrical unit vectors ðêx; êr; êfÞ for
compactness. The relationship between cartesian and cylindrical unit vectors is

êr ¼
1

r
ðyêy þ zêzÞ and êf ¼

1

r
ð�zêy þ yêzÞ. (9)

2.2. Scaling and order of magnitude analysis

There is a need to simplify Eqs. (6); when fully expanded, Eq. (6a) has 11 terms, which in turn contributes 66
terms to the strain energy. We therefore scale the governing equations in order to carry out an order of
magnitude analysis such that insignificant terms can be neglected on a physically justifiable and consistent
basis. By dividing each of the three dependent variables ðū;f;cÞ and the four independent variables ðx; y; z; tÞ
by an appropriate characteristic length scale (denoted with subscript c), the following non-dimensionalized
variables (denoted with a subscript s) are obtained:

ūs ¼
ū

ūc

; fs ¼
f
fc

; cs ¼
c
cc

¼
c
r2c
; xs ¼

x

xc

¼
x

L
,

ys ¼
y

rc

; zs ¼
z

rc

; ts ¼
t

tc

¼
t

L

ffiffiffiffi
E

r

s
, (10)

where xc ¼ L is the beam length and yc ¼ zc ¼ rc is the radius of the circle inscribing the beam cross-section;
tc ¼ L

ffiffiffiffiffiffiffiffiffi
r=E

p
is the time scale of the axial resonance frequency of the prismatic beam (chosen as a reference), r

and E are, respectively, density and modulus of elasticity. The scale for the warping function, cc ¼ r2c is
estimated from the Saint-Venant warping function cEllipse of a prismatic elliptical beam [15]; similar estimates
may be obtained for other cross-sections,

cEllipse ¼ �
a2 � b2

a2 þ b2
yz ¼ �

1� ðb=aÞ2

1þ ðb=aÞ2
yz ¼ �Byz, (11)
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where a and b are the semi-major and semi-minor axes, and B 2 ð�1; 1Þ is a dimensionless coefficient.
Substituting Eqs. (10) and (11) into cc ¼ c=cs provides the following estimate for cc:

cc ¼
c
cs

¼
�BðrcysÞðrczsÞ

�Byszs

¼ r2c . (12)

The definitions for the characteristic deformations ðūc;fcÞ are chosen at a later stage to simplify the
non-dimensional form of the equations of motion (see Section 3.1). They are shown here for completeness;

ūc ¼
f T0L2

EA
and fc ¼

f T0L
3

E
ffiffiffiffiffiffiffiffiffiffi
K0A
p , (13)

where ðf T0; f M0Þ are the characteristic amplitudes of the distributed axial and torsional loads ðf T ; f MÞ. Note
the use of f T0 for fc is intentional.

Applying the change of variables in Eq. (10)–(6), the terms contributing to strain may be separated into four
classes by their non-dimensional coefficients (NDCs) as shown in Table 1. Note that the NDCs are obtained
by dividing the dimensional coefficient by fcrc=L, and the subscript comma notation denotes partial
differentiation:

c;y ¼
qc
qy

, (14)

and

c;z ¼
qc
qz

. (15)

A comparison of the relative magnitude of the NDCs shows that if the characteristic axial strain �c ¼ ūc=L and
the characteristic shear strain gc ¼ fcrc=L are small (i.e. �c51 and gc51) then the underlined terms in Eqs. (6)
and Class 4 terms in Table 1 (doubly underlined in Eqs. (6)) can be ignored, thus simplifying the strain
components to

�xx ¼ �̄xx þ y
qc
qx
þ

qy
qx

c, (16a)

�xy ¼
1

2
y

qc
qy
� z

� �
; �xz ¼

1

2
y

qc
qz
þ y

� �
, (16b)

�yy ¼ �yz ¼ �zz ¼ 0. (16c)

For example, an aluminium beam (E ¼ 71MPa, G ’ 27GPa, tyield ’ 250MPa) with an elliptical cross-section
satisfies the first condition in the elastic region (�max ¼ 9:3� 10�3). Using Saint-Venant’s theory of torsion for
Table 1

Classification of strain components by their non-dimensional coefficients (NDCs)

Class Terms Coefficients NDC

1 qū

qx

ūc

L

ūc

fcrc

2
y
qc
qx

,
qy
qx

c fcr2c
L2

rc

L

3 1
2
yc;y,

1
2
yc;z,

1
2
yz, 1

2
yy 1

2

fcrc

L

1
2

4 1
2r

2y2, 1
2y

2c2
;y,

1
2
y2c;yc;z,

1
2
y2c2

;z, 1

2

f2
c r2c

L2

1

2

fcrc

L
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prismatic beams [15],

tmax ¼
2Ga2b

a2 þ b2

fc

L
)

fcrc

L
¼

tmax

2G

a

b
þ

b

a

� �
, (17)

and noting that rc ¼ a (the radius of the inscribing circle), it can be estimated that gc ¼ fcrc=Lo0:05 when the
ellipse aspect ratio b=a40:1. This implies that Eqs. (16) may not be valid for extremely thin cross-sections.
Note that the same strain components are obtained if an infinitesimal strain–displacement relation is used and
the elastic rotation f is limited to small angles (e.g. fo8� for 1% error from the trigonometric functions in
Eqs. (1)).
2.3. Strain energy, kinetic energy and applied work

The strain energy function is determined from the simplified strain components in Eqs. (16) and the
constitutive law for elastic isotropic materials. Since �yy ¼ �zz ¼ �yz ¼ 0, the constitutive law is given by

txx ¼ E�xx; txy ¼ 2G�xy; txz ¼ 2G�xz. (18)

The strain energy is thus

U ¼

ZZZ
V

1

2
E�2xx þ 2Gð�2xy þ �

2
xzÞdV . (19)

Substituting Eqs. (16) into Eq. (19), the strain energy (in terms of the displacement field) is found to be

U ¼

ZZZ
V

1

2
Eð�̄2xx þ ðy

0cÞ2 þ ðyc0Þ2Þ þ Eð�̄xxy
0cþ �̄xxyc

0
þ y0yc0cÞ

þ
1

2
Gy2

qc
qy
� z

� �2

þ
qc
qz
þ y

� �2
" #

dV . (20)

The kinetic energy is given by

T ¼

ZZZ
V

1

2
rj _Rj2 dV , (21)

which, upon the substitution of _R from Eq. (8) results in

T ¼

ZZZ
V

1

2
r½ _̄u2 þ 2 _̄u_ycþ _y2c2

þ r2 _f2
�dV . (22)

The work done by external forces is

W ext ¼

Z L

x¼0

FT �̄xx þ F Myþ f T ūþ f Mfdx

¼

ZZZ
V

dFT

dA
�̄xx þ

dF M

dA
yþ

df T

dA
ūþ

df M

dA
fdV , (23)

where the force F T ðtÞ and moment FM ðtÞ are applied at the ends of the beam, and the tensile force f T ðx; tÞ and
moment f Mðx; tÞ are distributed along the axis of the beam.

With the applied work, kinetic and elastic energies now expressed in terms of three unknown functions ū;f;
and c, Hamilton’s principle may be applied to derive the equations of motion (see Appendix A for details).
Since there are three dependent variables, there are three governing equations:

df T

dA
þ E

q
qx
ð�̄xx þ y0cþ yc0Þ ¼ r

q
qt
ð _̄uþ _ycÞ, (24a)
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df M

dA
þ E

q
qx
ðyc02 þ �̄xxc

0
þ y0cc0Þ þ G

q
qx
½yððc;y � zÞ2 þ ðc;z þ yÞ2Þ�

� E
q2

qx2
ðy0c2

þ �̄xxcþ ycc0Þ ¼ r
q
qt
ðr2 _fÞ � r

q2

qxqt
ð _̄ucþ _yc2

Þ, (24b)

rð_y _̄uþ _y2cÞ � Eðy02cþ �̄xxy
0
þ yy0c0Þ þ E

q
qx
ðy2c0 þ �̄xxyþ yy0cÞ þ Gy2

q
qy
ðc;y � zÞ þ

q
qz
ðc;z þ yÞ

� �
¼ 0,

(24c)

where the natural boundary conditions over the entire surface of the beam are

a �Eð�̄xx þ y0cþ yc0Þ þ
dF T

dA

� �
anx dA ¼ 0, (25a)

a Eðcc00yþ 2cc0y0 þ c2y00 þ cū00Þ � rðc €̄uþ c2 €yÞ � G½ðc;y � zÞ2 þ ðc;z þ yÞ2�yþ
dFM

dA

� �
anx dA ¼ 0, (25b)

a� Eðc2y0 þ cū0 þ cc0yÞanx dA ¼ 0, (25c)

aEðy2c0 þ �̄xxyþ yy0cÞanx þ Gy2 ½ðc;y � zÞany þ ðc;z þ yÞanz� dA ¼ 0, (25d)

and anx; any; anz are components of the normal vectors on the surface of the beam. The initial conditions are
given at the end of Appendix A.
2.4. Simplification of the warping function

The full governing equations for extension, torsion and cross-sectional warping of pretwisted beams are
fully three-dimensional, coupled, and nonlinear. To simplify the problem, we note that the underlined terms in
Eqs. (24c) and (25d) are the governing equations for the Saint-Venant warping function of a prismatic bar. To
determine the conditions under which the extra terms may be neglected for pretwisted beams, Eqs. (24c) and
(25d) are scaled by substituting the change of variables defined in Eqs. (10). The terms in the resulting
equations may be separated into six classes by their NDCs (see Table 2): Classes 5–7 are terms from Eq. (24c),
non-dimensionalized with respect to Gf2

c=L2; and Classes 8–10 are terms from Eq. (25d), non-dimensionalized
with respect to X, where

X ¼ G
f2

crc

L2
anr, (26)

and

anr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

ny þ a2
nz

q
. (27)

If NDC 5, 6, 8 and 9 are small relative to unity (in other words, small relative to NDC 7 and 10), then we
can simplify Eqs. (24c) and (25d) to the following:

r2c ¼ 0, (28a)

qc
qy
� z

� �
any þ

qc
qz
þ y

� �
anz ¼ 0 along the boundary of the cross-section, (28b)

which are the governing equations of the warping function for prismatic beams. In order to determine the
conditions under which NDC 5, 6, 8 and 9 are small, we note that the NDCs can be expressed in terms of four
non-dimensional parameters: the slenderness ratio SL, the amplitude ratio AP, the tilt ratio of surface normal
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Table 2

Classification of the components of Eqs. (24c) and (25d) by their non-dimensional coefficient (NDCs)

Class Terms Coefficients NDC

5 r_y _̄u, r
fcūc

Lt2c
,

E�̄xxy
0, E

q
qx
ð�̄xxyÞ E

fcūc

qL3

E

G

ūc

fcrc

rc

L
�

E

G

SL

AP

6 r_y
2
c, r

f2
c r2c

L2t2c
,

Ey02c, Eyy0c0,

E
q
qx
ðy2c0Þ, E

q
qx
ðyy0cÞ, E

f2
c r2c

L4

E

G

r2c
L2
�

E

G
SL2

7
Gy2

q2c
qy2

, Gy2
q2c
qz2

G
f2

c

L2

1

8 E�̄xxyanx
E
fcūc

L2
anx

E

G

ūc

fcrc

anx

anr

�
E

G

TR

AP

9 Ey2c0anx, Eyy0canx
E
f2

c r2c
L3

anx

E

G

rc

L

anx

anr

�
E

G
� SL� TR

10 Gy2ðc;y � zÞany,
G
f2

c rc

L2
any,

any

anr

Gy2ðc;z þ yÞanz,
G
f2

c rc

L2
anz,

anz

anr
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vectors TR, and Poisson’s ratio n:

SL ¼
rc

L
; AP ¼

fcrc

ūc

; TR ¼
anx

anr

;
G

E
¼

1

2ð1þ nÞ
. (29)

Note that the tilt ratio is directly related to the rate of pretwist k; for a beam with rectangular cross-section of
width a and height b (a4b), the maximum tilt ratio is given by

TRmax ¼
ka

2
¼

krcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þAR2

p , (30)

where AR ¼ b=a is the cross-section aspect ratio, and krc ¼ rcb=L ¼ tanðaÞ can be interpreted as a non-
dimensional rate of pretwist related to the helix angle a (formed between the helix generated by the vertices at
rc and the beam axis). For a general procedure to determine the tilt ratio of a uniformly twisted beam see
Appendix B.

With the exception of the amplitude ratio (AP), the magnitude of the NDCs depends purely on the
geometry (SL, TR) and the material property (n) of the beam. If we let e be a small number, the four
inequalities NDCoe can be used as criteria for checking when NDC 5, 6, 8, 8 are small, in other words, the
applicability of the simplified warping function of Eq. (28b). In Fig. 2, the region in the parameters space
ðSL;TR;APÞ satisfying e ¼ 0:1 and 0.05 are shaded, respectively, in light grey and dark grey (note that we fix
Poisson’s ratio at 0.3 since it approximates the behaviour of a wide range of materials). The physical
interpretation of Fig. 2 regarding the conditions for applying Eq. (28b) is as follows: the flat cap on the
slenderness ratio implies that the beam should be slender; the variable threshold on the amplitude ratio implies
that the torsional deformation should be dominant over the axial deformation; finally, the limit on the
allowable tilt ratio sets a maximum on the allowable pretwist.

While Eq. (28b) appears identical to the governing equations for Saint-Venant’s warping function of
prismatic bars, there is a subtle difference in the solution for c. In the present problem, the bar is pretwisted
and hence the components of the surface normal vectors ðany; anzÞ are not constant along the beam. By
applying a coordinate transformation from the orthogonal CS ðx; y; zÞ to the rotating CS ðx; Z; zÞ, Eq. (28b) is
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Fig. 2. The region in the parameter space ðSL;TR;APÞ where NDC 5, 6, 8 and 9 are less than e, representing the criteria under which the

simplified warping function equation (28b) is valid. The region where e ¼ 0:1 is shaded in light grey, and the region where e ¼ 0:05 is

shaded in dark grey.
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shown to be

r2c ¼ 0, (31a)

qc
qZ
� z

� �
anZ þ

qc
qz
þ Z

� �
anz ¼ 0 along the boundary of the cross-section, (31b)

where ðanZ; anzÞ are now constant. Thus when the NDCoe criteria are satisfied, the warping functions of
prismatic bars can be applied to pretwisted beams through a simple modification: replacing ðy; zÞ by ðZ; zÞ.

2.5. The simplified equations of motion

The above results on the warping function allow substantial simplification of the governing equations:
they become linear and may be integrated over the cross-section to reduce the governing equations to a
one-dimensional form. While the modification of the prismatic warping function for use in pretwisted
beams is not new, the scaling analysis presented in Section 2.4, culminating in NDC 5, 6, 8, 9 and the
NDCo� criteria shown in Fig. 2, forms the central result of this paper. The criteria allows the prediction
of conditions under which the commonly used simplification of the warping function fails. The last
point is important in applications that involve beams with high rates of pretwist. In Section 3.3 we
demonstrate the utility of this result in highlighting beam geometries that falls outside the region where
Eqs. (31) is valid.

Note that if the reduction of the governing equations to one-dimensional form is attempted by the sectional
integration of Eqs. (24) and (25), we obtain a set of physically inconsistent equations,

EA
q2ū
qx2
þ 2ES1

q2f
qx2
¼ rA

q2ū
qt2

, (32a)

�ES1
q2ū

qx2
þ ðGJs � 2EK1� 3D02Þ

q2f
qx2
� EK0

q4f
qx4
¼ rIp

q2f
qt2
� rS1 €̄u� rK0

q4f
qt2x2

. (32b)

There are two major objections to Eqs. (32). First, the Maxwell–Betti reciprocal theorem [15,16], which is
satisfied by all linearly elastic structures, states that the stiffness coefficients are symmetric and thus the terms
with a single underline in Eq. (32) should be equal. Second, K1 and D02 are positive and increasing functions of
pretwist, which means the terms of Eq. (32) in parentheses predict a fall in torsional stiffness as pretwist is
increased; however, experimental results [1] and FEA (see Section 3.2) show that the torsional stiffness and
resonance frequency should rise.

The appropriate places to perform the sectional integrations are on the energy–displacement field relations
equations (20)–(23). This eliminates c as an unknown dependent variable and gives the following governing
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equations:

f T þ EA
q2ū
qx2
þ ES1

q2f
qt2
¼ rA

q2ū
qx2

, (33a)

f M þ ES1
q2ū

qx2
þ ðEK1 þ GJsÞ

q2f
qx2
� EK0

q4f
qx4
¼ rIp

q2f
qt2
� rK0

q4f
qt2qx2

, (33b)

the natural boundary conditions at x ¼ 0 and L are

0 ¼
q2f
qx2

, (34a)

F T ¼ EA
qū

qx
þ ES1

qf
qx

, (34b)

FM ¼ ES1
qū

qx
þ ðEK1 þ GJsÞ

qf
qx
� EK0

q3f
qx3
þ rK0

q3f
qt2qx

, (34c)

where the sectional integrals S1;K0;K1;D02; Js; Ip are defined as follows:

Si ¼

ZZ
A

qic
qxi

dy dz, (35a)

Ki ¼

ZZ
A

qic
qxi

� �2

dy dz, (35b)

Dij ¼

ZZ
A

qic
qxi

qjc
qxj

dy dz, (35c)

Js ¼

ZZ
A

qc
qy
� z

� �2

þ
qc
qz
þ y

� �2

dydz, (35d)

Ip ¼

ZZ
A

r2 dydz where i; j ¼ 0; 1; 2; . . . . (35e)

The derivation of Eqs. (33)–(34) assumes that the modified Saint-Venant’s warping function has odd
symmetry, which causes many sectional integrals to vanish. For example, Si ¼ 0 when i is even, and Dij ¼ 0
when i and j are not both even or both odd. While we are not aware of general proofs for the odd symmetry of
c, it holds true for a wide range of specific cross-sectional geometries such as triangles, rectangles, and ellipses
[10,15,16].

Eqs. (33) and (34) are the same as the governing equations derived by Rosen [1] except for the underlined,
fourth-order terms involving the sectional integral K0. The f

0000 term comes from the inclusion of non-uniform
torsion in Eq. (16a), and the €f

00
term comes from the mixed derivative term in Eq. (8). These terms are

responsible for subtle effects on the resonance frequencies that are missing in Rosen’s equations; as will be
shown in Sections 3.1 and 3.3, the small magnitude of K0 relative to Ip and EK1 þ GJs leaves the fundamental
frequencies unaffected while altering higher harmonics.

3. Pretwisted beams with rectangular cross-sections

To test how well the above equations capture the behaviour of pretwisted beams, the resonance frequencies
and the corresponding mode shapes for rectangular cross-sectioned beams were found semi-analytically and
compared to a FEA solution. A simple, free–free boundary condition is used so that Eqs. (34), the natural
boundary conditions; and Eqs. (33), the equations of motion, are used without the forcing terms f T ; f M or
FT ;FM . To determine the sectional integrals, a two-term approximation of the warping function for
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rectangular cross-sections is used [10]

cðZ; zÞ ¼ Zz�
8a2

p3

sinh
pz
a

cosh
pb

2a

sin
pZ
a
. (36)

Eqs. (33) and (34) are then fully defined by four non-dimensional parameters: n, the Poisson’s ratio; SL, the
beam slenderness ratio; AR, the cross-sectional aspect ratio; and kL, the total pretwist angle.
3.1. Solving the equation of motion

Eqs. (33) and (34) are first non-dimensionalized by applying the scaling scheme introduced in Section 2.2;
the governing equations can be rewritten in the following form:

f Ts þ
q2ūs

qx2
s

þ a1
q2fs

qx2
s

¼
q2ūs

qt2s
, (37a)

a4f Ms þ a1
q2ūs

qx2
s

þ a2
q2fs

qx2
s

�
q4fs

qx4
s

¼ a3
q2fs

qt2s
�

q4fs

qt2sqx2
s

, (37b)

where the natural boundary conditions at xs ¼ 0 and 1 are

q2fs

qx2
s

¼ 0, (38a)

qūs

qxs

þ b1
qfs

qxs

¼
F T

Lf T0

, (38b)

b2
qūs

qxs

þ b3
qfs

qxs

� b4
q3fs

qx3
s

þ b4
q3fs

qt2sqxs

¼
F M

L2f T0

, (38c)

and the coefficients a1; . . . ; a4 and b1; . . . ; b4 are

a1 ¼
LS1ffiffiffiffiffiffiffiffiffiffi
K0A
p ; a2 ¼

L2

K0
K1 þ

G

E
Js

� �
; a3 ¼

L2Ip

K0
; a4 ¼ L2

ffiffiffiffiffiffi
A

K0

s
f M0

f T0

, (39a)

b1 ¼
S1Lffiffiffiffiffiffiffiffiffiffi
K0A
p ; b2 ¼

S1

L2A
; b3 ¼

EK1 þ GJs

E
ffiffiffiffiffiffiffiffiffiffi
K0A
p ; b4 ¼

1

L2

ffiffiffiffiffiffi
K0

A

r
. (39b)

The solutions are then assumed to be of the following form:

ūsðxs; tsÞ ¼ Uelsxseiosts ,

fsðxs; tsÞ ¼ Felsxseiosts . (40)

Substituting Eqs. (40) into Eqs. (37) results in an amplitude ratio APs,

APs ¼
F
U
¼ �

l2s þ o2
s

2l2s
, (41)

and a characteristic equation of the form

A1l
6
s þ ðA2 þ A3o2

s Þl
4
s þ ðA4o2

s þ A5o4
s Þl

2
s þ o4

s ¼ 0, (42)
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where the coefficients A1; . . . ;A5 are combinations of coefficients a1; . . . ; a4 in Eqs. (37). The characteristic
equation has six complex roots ls;1; . . . ; ls;6 which are functions of os. The solution thus has the form

ūsðxs; tsÞ ¼
X6
j¼1

Uje
ls;j ðosÞxseiosts , (43a)

fsðxs; tsÞ ¼
X6
j¼1

APjUje
ls;jðosÞxseiosts . (43b)

Substituting Eqs. (43) into the six boundary conditions in Eqs. (38) results in a matrix equation

½BC�U ¼ 0, (44)

where U ¼ ½U1; . . . ;U6�
T determines the mode shape and ½BC� is a 6� 6 matrix whose entries are composed of

complicated functions of os. The natural frequencies os;n are given by the solutions to the transcendental
equation

detð½BC�Þ ¼ 0, (45)

and the corresponding mode shapes are determined from the null space of ½BC� after the substitution of os;n.
In the present work, the roots of Eq. (45) were found numerically using the secant method. The root-finding

algorithm was set to terminate when detð½BC�Þo10�8, and the initial root-containing intervals were obtained
by plotting detðBCÞ and extracting the intervals where a sign change takes place. Due to the presence of
exponential functions, numerical evaluation of detðBCÞ is highly sensitive to machine round-off errors.
The problem was overcome through the use of the arbitrary precision arithmetics of Mathematica 5.0
(Wolfram Research Inc., Champaign, Illinois). An example of the curve of detð½BC�Þ as a function of os is
shown in Fig. 3.

To validate the numerical methods employed, we compare the resonance frequencies predicted by the
current method with those predicted by prismatic bar theory. The non-dimensionalized torsional and axial
resonance frequencies (os;T0

;os;A0
), according to the prismatic bar theory, are

os;T0
¼ np

ffiffiffiffiffiffiffiffi
GJs

EIp

s
; n ¼ 1; 2; . . . , (46a)

os;A0
¼ mp; m ¼ 1; 2; . . . , (46b)

which are shown, respectively, in Fig. 3 as ‘þ’s and ‘�’s. When the pretwist is zero, the predictions from
Eqs. (33) and (34) are expected to match those of Eqs. (46); Fig. 3 shows that this is true for the axial
resonance frequencies os;A0

. While some deviation of the torsional resonance frequencies can be seen for the
higher harmonics, the fundamental torsional resonance frequency shows remarkable agreement with the
2�
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Fig. 3. Determining the natural frequencies: the plot of detð½BC�Þ as a function of os at aspect ratio ¼ 0:4, slenderness ratio ¼ 0:1,
pretwist ¼ 0, n ¼ 0:3. The roots found from the secant method are marked with red dots. The points corresponding to os;T0

and os;A0
are

marked, respectively, with ‘+’s and ‘�’s (colour online).
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prismatic beam results, as illustrated in Fig. 4, where the first non-zero root of Eq. (45) is compared with the
os;T0

predicted by Eq. (46a) and FEA. This result lends credence to the method employed in solving the
equations of motion.

A representative set of vibration mode shapes is shown in Fig. 5, where the mode number n denotes that the
mode corresponds to the n-th non-zero solution to Eq. (45). Whether the n-th root represents an axial or
torsional resonance can be inferred from its frequency and the observed mode shape. For example, the
vibration mode at n ¼ 3 is an axial resonance because it has no torsional motion, fs ¼ 0, and os;3 ¼ p
corresponds to the fundamental axial resonance of prismatic bars. The status of the other frequencies is more
ambiguous, due to significant coupling between torsional and axial motion, however, n ¼ 1 can be traced to
the fundamental torsional resonance frequency of prismatic bar theory (as shown in Fig. 4), thus n ¼ 1, 2, 4
and 5 are predominantly torsional modes.

We determined the variation of the fundamental torsional resonance frequency os;1 for a wide range of
geometries. The pretwist kL is increased from 0 to 2 revolutions, the cross-section aspect ratio (AR ¼ b=a) was
varied from 0.2 to 0.9, and the beam slenderness ratios (SL ¼ rc=L) were examined at 0.1, 0.05 and 0.025. The
sole relevant material property—Poisson’s ratio—was fixed at 0.3, as reasoned before. The results for the
fundamental torsional resonance os;T are summarized in Section 3.3, where instead of kL, the helix angle
a ¼ tan�1ðkLSLÞ is used to characterize the rate of pretwist (allowing the collapse of the results from the three
different slenderness ratios onto the same curves).
3.2. Finite-element analysis

FEA modal of pretwisted beams was performed using ANSYS 10.0 (ANSYS Inc., Canonsburg, PA, USA).
The resonance frequencies and the vibration mode shapes were determined over the same range of geometric
configurations used for the analytical solutions. In order to automate the identification of the vibration modes
of the FEA results—to determine whether the mode is flexural, axial or torsional—we define a modal
identification parameter Li adapted from [17]

Li ¼
1

S

I
s

u � ei

juj
ds, (47)

where the path integral is performed along the cross-section perimeter at the beam tip, S is the path length,
and i denotes the vibration mode of interest. The parameter Li varies between �1 and 1, and represents a
normalized average of the displacement component in the ei direction, where ef is associated with torsional
vibration, and ex is associated with axial vibration. In Fig. 6, the parameters Lf and Lx are plotted against
frequency for the first 30 modes of all geometries considered in the FEA. The path integral for Li was
evaluated as a discretized summation over 60 divisions (15 per edge) along the cross-section perimeter.
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Fig. 5. The vibration mode shapes of an rectangular beam with aspect ratio ¼ 0:4, slenderness ratio ¼ 0:1, pretwist ¼ 0:1 revolution (helix
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It shows that Lf and Lx work well as identification parameters for the presence of torsional and axial
components in a vibration mode. At low frequencies, the modes are quite distinct and a simple mode
classification rule can be used:
	
 Torsional modes: jLfjX0:9, represented by black dots in Fig. 6.

	
 Axial modes: jLxjX0:9, represented by red boxes in Fig. 6.
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 Flexural modes: jLfjp0:1 and jLxjp0:1, represented by blue ‘�’s in Fig. 6.

	
 Mixed modes: 0:1ojLfjo0:9 and 0:1ojLxjo0:9, represented by grey ‘þ’s in Fig. 6.
The first axial and torsional mode for each geometry, as classified by the above scheme, are, respectively, taken
as the fundamental axial and torsional resonance os;A and os;T . The results are summarized in Fig. 7.

At higher harmonics, a significant amount of coupling is present for various geometries. Note especially
the series of resonance modes that lie along the unit circle in Fig. 6(c) and form vertical lines at os ’ 3p=2 in
Fig. 6(a) and (b). These modes belong to geometries with SL ¼ 0:1 and AR ’ 1, in other words, thick square
beams. Many points in this series are close to the maximum coupling point of Lf ¼ Lx ¼ 1=

ffiffiffi
2
p

.

3.3. Comparison of the theoretical predictions with the FEA results

3.3.1. Rosen’s equations

The equations of motion derived in the present work contain extra fourth-order terms compared to Rosen’s
equations of motion [1]. Table 3 shows, however, that the non-dimensionalized coefficients of the second-
order terms are 2–4 orders of magnitude greater than the fourth-order terms (see Eqs. (37)). Hence the
differences between Eqs. (33) and Rosen’s equations in the prediction of the fundamental resonance
frequencies ðos;T ;os;AÞ are negligible. Their frequency plots both appear identical to the solid lines in Fig. 7:
both analytical methods predict a rise in os;T and os;A as the rate of pretwist a is increased, both predict that
os;T will increase as the cross-section approaches a square (AR ¼ 1), and both predict that the effect of
pretwist is amplified as the cross-section become thinner.
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Table 3

Coefficients of the second-order terms in the non-dimensionalized equations of motion Eqs. (37) when slenderness ratio SL ¼ 0:1

Aspect ratio AR Helix angle a Torsional stiffness a2 Rotational inertia a3

0.2 0 615 9111

51� 6316 9111

0.9 0 6100 18848

51� 10303 18848
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It should be pointed out that the above result should not be interpretations as a justification to neglect f00

and _f0 in the derivation of the equation of motion. As shown earlier f00s and _f0s are of similar or greater
magnitude than commonly retained terms such as f0s and _fs:

fsðxsÞ�F cosðlsxsÞe
iosts implies jf00s j�lsjf

0
sj and j _f0sj�lsj

_fsj. (48)

In order to neglect the fourth-order terms that arise from the inclusion of f00 and _f0 in the derivation, the
magnitude of their influence coefficients in the final equations of motion need to be considered, which cannot
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be determined if f00 and _f0 are neglected a priori. Additionally, the influence of the fourth-order terms becomes
noticeable at higher harmonics since lsb1, as Fig. 3 indicates.

3.3.2. Differences and similarities

One of the chief contributions of this study is the derivation of an objective and measurable criteria for
checking the validity of the assumption that the warping function of pretwisted beams are locally similar to
that of a prismatic beam. In this section, the limitations of the simplified warping function are revealed by
comparing FEA results with Rosen’s and our analytical predictions (which are based on the warping function
of prismatic beams).

The analytical predictions of the fundamental torsional resonance frequencies os;T show a good agreement
with FEA results when the helix angle is below 30� and the aspect ratio is above 0.2; however, at high rates of
pretwist and low aspect ratios, the analytical solutions significantly overpredict os;T .

It may be seen in Fig. 7(a) that many solutions lying in the invalid region according to our criteria
(marked with crosses) in fact match the FEA results quite well. This apparent contradiction with the
scaling analysis may lead one to question the criteria used to judge the validity of the solution. However,
when the corresponding points in Fig. 7(b) are considered, it can be seen that the criteria were in fact
picking up geometries for which the predicted axial resonance frequencies deviated significantly from the FEA
results.

The poor prediction of the axial resonance frequencies by warping function based pretwisted beam theories
has existed in the literature for a long time without adequate explanation [1,8]. Our warping function criteria
finally show that this discrepancy may be traced to use of the modified prismatic warping function where it is
no longer valid. If the simplified prismatic warping function is invalid, Eqs. (24) and (25) suggest that the
warping function is deformation dependent and variable along the beam’s axis. Thus for beams with sufficient
pretwist, the application of the modified prismatic warping function effectively ‘‘clamps’’ the cross-section to
warp in the manner prescribed by Eqs. (31), resulting in higher stiffness and causing the simple theory to
overpredict the resonance frequencies.

3.3.3. Warping function of rectangular cross-sections

A source of error in this study is the warping function used for rectangular cross-sections. The solution to
Eq. (28b) for rectangular cross-sections with width a and height b is an infinite series [10]

cðZ; zÞ ¼ Zz�
8a2

p3
X1
n¼0

ð�1Þn

ð2nþ 1Þ3
sinh knz

coshðknb=2Þ
sin knZ,
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Fig. 8. The effect of neglecting higher-order terms of the warping function for rectangular cross-sections. The variation of the

fundamental torsional resonance frequency os;T predicted by the prismatic bar theory is plotted against AR when the warping function is

evaluated to the n-th term.
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where

kn ¼
ð2nþ 1Þp

a
. (49)

Due to the complex sectional integrals involved in Eqs. (33)–(35), the warping function was only evaluated to
the n ¼ 0 term in Section 3.1. The effect of neglecting the higher-order terms at zero pretwist can be seen in
Fig. 8, where os;T predicted by prismatic beam theory is plotted against AR as successively more terms are
included in c. The torsional resonance frequency should approach zero as AR! 0. However, due to the
series approximation of c, an erroneous finite os;T is predicted. As more terms are included in c, the more
accurate the os;T predictions become at low AR.
4. Conclusions

The prismatic beam warping function is commonly used in theories for pretwisted beams without an
understanding of its limitations. Through scaling analysis of the equations governing the warping function of
pretwisted beams—which we derive carefully from Hamilton’s principle—a set of criteria for checking the
validity of the simplifying assumption is obtained. Comparison of warping function-based analytical solutions
with FEA results show that the misuse of the prismatic warping function is responsible for the poor prediction
of the axial resonance frequencies in the literature [1,8].

Inconsistencies in Rosen’s equations of motion for axial–torsional coupling in pretwisted beams are also
corrected; the inclusion of f00 and _f in the derivation leads to the addition of fourth-order terms in the
equations of motion. The small size of the coefficients of the fourth-order terms means that the fundamental
resonance frequencies predicted by the fourth-order equation are essentially the same as Rosen’s theory,
however, the fourth-order terms becomes significant for higher harmonics.
Appendix A. Hamilton’s principle and the resulting Euler–Lagrange equation

To apply Hamilton’s principle, the strain energy equation (20), the kinetic energy equation (22), and the
work done by external loads equation (23) are substituted into Eq. (4), resulting in an equation of the form

d
Z t2

t1

ZZZ
V

F ðx; y; z; t; ū;f;cÞdV dt

� �
¼ 0, (A.1)

where

F ðx; y; z; t; ū;f;cÞ ¼
1

2
Eð�̄2xx þ ðy

0cÞ2 þ ðyc0Þ2 þ 2�̄xxy
0cþ 2�̄xxyc

0
þ 2y0yc0cÞ

þ
1

2
Gy2

qc
qy
� z

� �2

þ
qc
qz
þ y

� �2
" #

þ
1

2
r½ _̄u2 þ 2 _̄u_ycþ _y2c2

þ r2 _f2
�

þ
dFT

dA
�̄xx þ

dF M
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yþ

df T

dA
ūþ

df M

dA
f. (A.2)

The Euler–Lagrange equation resulting from Eq. (A.1) isZ t2

t1

ZZZ
V

Zū

qF

qū
�

q
qx

qF

q�̄xx

�
q
qt

qF

q _̄u

� �
dV dtþ

Z t2

t1

aZū

qF

q�̄xx

anx dAdtþ

ZZZ
V

Zū

qF

q _̄u

����
t2

t1

dV ¼ 0, (A.3a)

Z t2

t1

ZZZ
V

Zf
qF

qf
�

q
qx

qF

qy
�

q
qt

qF

q _f
þ

q2

qx2

qF

qy0
þ

q2

qxqt

qF

q_y

� �
dV dt

þ

Z t2

t1

a Zf
qF

qy
�

q
qx

qF

qy0
�

q
qt

qF

q_y

� �
anx þ Z0f

qF

qy0
anx

� �
dAdtþ

ZZZ
V

Zf
qF

q_y

����
t2

t1

þ Z0f
qF

q_y

����
t2

t1

dV ¼ 0, (A.3b)
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Z t2

t1

ZZZ
V

Zc
qF

qc
�

q
qx

qF

qc0
�

q
qy

qF

qc;y
þ

q
qz

qF

qc;z

" #
dV dtþ

Z t2

t1

aZc
qF

qc0
anx þ

qF

qc;y
any þ

qF

qc;z
anz

 !
dAdt ¼ 0,

(A.3c)

where Zū; Zf; Zc represents three independent arbitrary functions and the variational derivatives of F are

qF

qū
¼

df T

dA
;

qF

q _̄u
¼ rð _̄uþ _ycÞ;

qF

q�̄xx

¼ �Eð�̄xx þ y0cþ yc0Þ þ
dFT

dA
,

qF

qf
¼

df M

dA
;

qF

q _f
¼ rr2 _f;

qF

qy0
¼ �Eðy0c2

þ �̄xxcþ ycc0Þ,

qF

qy
¼ �Eðyc02 þ �̄xxc

0
þ y0cc0Þ � Gy½ðc;y � zÞ2 þ ðc;y þ zÞ2� þ

dFM

dA
,

qF

q_y
¼ rð _̄ucþ _yc2

Þ;
qF

qc;y
¼ �Gy2ðc;y � zÞ;

qF

qc;z
¼ �Gy2ðc;z þ yÞ,

qF

qc
¼ rð_y _̄uþ _y2cÞ � Eðy02cþ �̄xxy

0
þ yy0c0Þ,

qF

qc0
¼ �Eðy2c0 þ �̄xxyþ yy0cÞ. (A.4)

Substituting Eq. (A.4) into the Euler–Lagrange equation (A.3) gives the equations of motion, the boundary
conditions, and the initial conditions.

The initial conditions can be determined from the following equations:

Zū

qF

q _̄u

����
t2

t1

¼ 0; Zf
qF

q _f

����
t2

t1

¼ 0; Z0f
qF

q_y

����
t2

t1

¼ 0, (A.5)

which implies that the following initial conditions needs to be specified: ūðx; 0Þ, fðx; 0Þ, yðx; 0Þ,
_̄uðx; 0Þ þ _yðx; 0Þc, and _fðx; 0Þ.

Appendix B. Normal vectors on the surface of pretwisted beams

The surface of a constant cross-section pretwisted beam can be described by the following position vector
(see Fig. B1):

rðx; sÞ ¼ xex þ CðsÞ, (B.1)

where CðsÞ traces the perimeter of the cross-sectional geometry with the path variable s

CðsÞ ¼ ZðsÞeZ þ zðsÞez
¼ ðZðsÞ cos kx� zðsÞ sin kxÞey þ ðZðsÞ sin kxþ zðsÞ cos kxÞez. (B.2)
Fig. B1. Two parameter ðx; sÞ description of the surface of a pretwisted beam.
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Normal vectors can be obtained from the cross product of two non-parallel tangent vectors to the surface of
the pretwisted beam, thus

n ¼
qr
qs
�

qr
qx

. (B.3)

Expressing Eq. (B.1) in array form,

rðx; sÞ ¼

x

Z cos kx� z sin kx

Z sin kxþ z cos kx

2
64

3
75, (B.4)

the tangent vectors are obtained as

qr
qs
ðx; sÞ ¼

0

Z0 cos kx� z0 sin kx

Z0 sin kxþ z0 cos kx

2
64

3
75 and

qr
qx
ðx; sÞ ¼

1

�kðZ sin kxþ z cos kxÞ

kðZ cos kx� z sin kxÞ

2
64

3
75. (B.5)

Substituting Eq. (B.5) into Eq. (B.3) yields

n ¼

kðZZ0 þ zz0Þ

Z0 sin kxþ z0 cos kx

�Z0 cos kxþ z0 sin kx

2
64

3
75, (B.6)

which can then be used to determine the components of the unit normal vector n̂:

n̂ ¼
n

jnj
¼ ½anx; any; anz�

T. (B.7)

From Eq. (B.6), the component of the unit normal vector in the radial direction anr is

anr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

ny þ a2
nz

q
¼

1

jnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ0Þ2 þ ðz0Þ2

q
, (B.8)

which can be used to determine the following ratios, which are needed for comparing the magnitude of the
NDCs in Table 2,

anx

anr

¼
kðZZ0 þ zz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ0Þ2 þ ðz0Þ2

q , (B.9a)

any

anr

¼
Z0 sin kxþ z0 cos kxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ0Þ2 þ ðz0Þ2

q , (B.9b)

anz

anr

¼
�Z0 cos kxþ z0 sin kxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZ0Þ2 þ ðz0Þ2
q . (B.9c)
B.1. Elliptical cross-section

For a beam with an elliptical cross-section

ZðsÞ ¼ a cosðsÞ; Z0ðsÞ ¼ �a sinðsÞ, (B.10)

zðsÞ ¼ b sinðsÞ; z0ðsÞ ¼ b cosðsÞ. (B.11)
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Substituting Eq. (B.10) into Eq. (B.9a) yields

anx

anr

¼
kðb2
� a2Þ cosðsÞ sinðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 sin2ðsÞ þ b2 cos2ðsÞ

q , (B.12)

any

anr

¼
�a sin2ðsÞ þ b cos2ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2ðsÞ þ b2 cos2ðsÞ

q , (B.13)

any

anr

¼
�a sinðsÞ cosðsÞ þ b cosðsÞ sinðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 sin2ðsÞ þ b2 cos2ðsÞ

q . (B.14)

The extreme values of anx=anr are determined by solving for the stationary points of Eq. (B.12)

d

ds

anx

anr

� �
¼
ðb2
� a2Þkðb cos4ðsÞ � a2 sin4ðsÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 cos2ðsÞ þ a2 sin2ðsÞ

q ¼ 0, (B.15)

which has the solution

s ¼ tan�1ð
ffiffiffiffiffiffiffiffi
b=a

p
Þ ¼ tan�1ð

ffiffiffiffiffiffiffiffi
AR
p

Þ.

Substituting Eq. (B.16) back into Eq. (B.12) gives the extreme values of anx=anr for a beam with elliptical cross-
section

anx

anr

� �
extreme

¼ kðb� aÞ ¼ kL� SLðAR� 1Þ. (B.16)
B.2. Rectangular cross-section

For a beam with a rectangular cross-section of width a and height b, the boundary path can be
parameterized as

ðZðsÞ; zðsÞÞ ¼

ð�ða=2Þð�1þ 2sÞ; b=2Þ; s 2 ð0; 1Þ;

ð�a=2; ðb=2Þð3� 2sÞÞ; s 2 ð1; 2Þ;

ðða=2Þð�5þ 2sÞ;�b=2Þ; s 2 ð2; 3Þ;

ða=2;�ðb=2Þð7� 2sÞÞ; s 2 ð3; 4Þ;

8>>>><
>>>>:

(B.17)

where the derivatives are

ðZ0ðsÞ; z0ðsÞÞ ¼

ð�a; 0Þ; s 2 ð0; 1Þ;

ð0;�bÞ; s 2 ð1; 2Þ;

ða; 0Þ; s 2 ð2; 3Þ;

ð0; bÞ; s 2 ð3; 4Þ:

8>>>><
>>>>:

(B.18)

Substituting Eq. (B.17) into Eq. (B.9a) yields

anx

anr

¼

�kða=2Þð1� 2sÞ; s 2 ð0; 1Þ;

�kðb=2Þð3� 2sÞ; s 2 ð1; 2Þ;

�kða=2Þð5� 2sÞ; s 2 ð2; 3Þ;

�kðb=2Þð7� 2sÞ; s 2 ð3; 4Þ:

8>>>><
>>>>:

(B.19)
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It is clear from Eq. (B.19) that the extreme values of anx=anr occurs at the corners of the cross-sections. Since
bpa, the maximum tilt ratio for a rectangular cross-section is

anx

anr

¼
k � a

2
¼

k � rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þAR2

p ¼
kL� SLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þAR2

p . (B.20)
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